If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50a^2-40a=0
a = 50; b = -40; c = 0;
Δ = b2-4ac
Δ = -402-4·50·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-40}{2*50}=\frac{0}{100} =0 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+40}{2*50}=\frac{80}{100} =4/5 $
| 8x-8=8x–72 | | 4x-8+4x=8x–72 | | 10x+4.9x^2=0 | | 16x+7=-1+17x | | 2x^2+6x–20=0 | | 6y+3/7=1 | | 2x2+6x–20=0 | | -18.1=1.1+x/6 | | 13x-12/6=0 | | 2x+x=x+14 | | 4(5x+3)-2=3(6x+5)-1 | | x2-10=4-28 | | u/5-3.2=-15.7 | | 41x-3=120 | | -0.5x^2+0.75x+3.5=3.6 | | 8.3+v/7=-9.2 | | 12,8=8v | | f(2)=(1/9)^2 | | d2-6d=0 | | -3+8x^2+2x=0 | | 167=4-w | | 104-x=205 | | 2x^2+22+48=0 | | 79-x=162 | | 2-8(-4+3x)=5(x+10) | | -1-5x=-6x+8 | | 8y-5=8y-12 | | 5y+5y+60=0 | | -12=x/7 | | 3z+1/2=z+9/2 | | 5(x1/10)=3x+1/2 | | 2.48x+1.50=36.80 |